National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Mathematical models of retention object of urban drainage
Pavlík, Ondřej ; Stanko,, Ing Štefan (referee) ; Pollert,, Jaroslav (referee) ; Prax, Petr (advisor)
This work deals with the use of 3D mathematical models of fluid in water management practice. Using 3D mathematical model was assessed retention tank Jeneweinova, which is situated on a sewer network of the city of Brno and is an important object of urban drainage. Retention basin designed to keep overflow from CSO chambers to Svratka and Svitavský náhon during storm events. Retention tank Jeneweinova is suitable for the assessment, because tank was designed bassed the Master Plan drainage of Brno using 1D mathematical model. Another factor was the physical model, which was build in LVV Vin FAST BUT. And finally, near the retention tank will be installed measurement on the sewerage network, which will be able to verify the results whitch has been predicted in this work. Mathematical model of retention tanks Jeneweinova was build in software FLOW-3D. FLOW-3D is a general purpose CFD (Computational Fluid Dynamics) software for flow of fluid in steady and unsteady mode and uses computational techniques to solve the equations of motion of fluids. This software is mainly used for the calculation of hydraulic fluids, gas flow and heat transfer simulations. Results from 3D mathematical model has been compared with the values in the physical and 1D mathematical model.
Flow and diffusion characteristics inside the urban area
Chaloupecká, Hana ; Jaňour, Zbyněk (advisor) ; Brechler, Josef (referee)
Title: Flow and diffusion characteristics inside the urban area Author: Hana Chaloupecká Department: Department of meteorology and enviroment protection Supervisor: prof. RNDr. Zbyněk Jaňour, DrSc., IT AS CR, v. v. i. Supervisor's e - mail: janour@it.cas.cz Abstract: Uniqueness of different towns, consists of various shapes of buildings. The main topic of this work is to compare concentration diffusion within groups of buildings of various types. We pursued houses made of single blocks of two different lengths - they were placed parallel or in courtyards. For research of pollution diffusion within the housing estates a method of physical modelling has been used. For this purpose we summarized a theory of atmospheric boundary layer and physical modelling at first. Then we pursued experiments. Measuring took place in a model in scale 1 : 300 inside an aerodynamic wind tunnel of the Institute of Thermomechanics AS in Nový Knín. We checked out the requirements placed on similarity of the real boundary layer and boundary layer modelled in the tunnel. By the measuring of concentration in urban areas we weren't watching a plume from the pollution source but we were studying an inversion task. We measured concentrations in two fixed points from different point sources inside the defined areas. A sensitivity of...
Microscale flow and diffusion characteristics inside the urban area
Kukačka, Libor
Title: Microscale flow and diffusion characteristics inside the urban area Author: Libor Kukačka Department: Department of meteorology and enviroment protection Supervisor: prof. RNDr. Zbyněk Jaňour, DrSc., IT AS CR, v.v.i. Supervisor's e-mail address: janour@it.cas.cz Abstract: Dispersion of pollutants in the atmosphere of urban areas is the important task in environmental sciences. The main goal was the quantitative studying of a flow in a symmetrical urban built-up area depending on a running on flow direction. There was given a theoretical base of the physical modelling of the atmospheric boundary layer in this work. The measurement was done with a model of the urban build-up area at a scale of 1:200 in the aerodynamic wind tunnel of the IT AS CR, v.v.i. in Nový Knín. The requirements to the similarity to a real atmospheric boundary layer and a model boundary layer in the wind tunnel were accomplished. Velocity fields, concentration fields and fields of scalar fluxes were measured in the area of a rectangular intersection. Results of the experiment showed significant sensitivity of the velocity field about the running on flow direction that extensively influenced ventilation of street canyons. Keywords: air pollution, atmospheric boundary layer, physical modelling, dispersion of passive contaminant,...
Flow and diffusion characteristics inside the urban area
Chaloupecká, Hana ; Jaňour, Zbyněk (advisor) ; Brechler, Josef (referee)
Title: Flow and diffusion characteristics inside the urban area Author: Hana Chaloupecká Department: Department of meteorology and enviroment protection Supervisor: prof. RNDr. Zbyněk Jaňour, DrSc., IT AS CR, v. v. i. Supervisor's e - mail: janour@it.cas.cz Abstract: Uniqueness of different towns, consists of various shapes of buildings. The main topic of this work is to compare concentration diffusion within groups of buildings of various types. We pursued houses made of single blocks of two different lengths - they were placed parallel or in courtyards. For research of pollution diffusion within the housing estates a method of physical modelling has been used. For this purpose we summarized a theory of atmospheric boundary layer and physical modelling at first. Then we pursued experiments. Measuring took place in a model in scale 1 : 300 inside an aerodynamic wind tunnel of the Institute of Thermomechanics AS in Nový Knín. We checked out the requirements placed on similarity of the real boundary layer and boundary layer modelled in the tunnel. By the measuring of concentration in urban areas we weren't watching a plume from the pollution source but we were studying an inversion task. We measured concentrations in two fixed points from different point sources inside the defined areas. A sensitivity of...
Microscale flow and diffusion characteristics inside the urban area
Kukačka, Libor
Title: Microscale flow and diffusion characteristics inside the urban area Author: Libor Kukačka Department: Department of meteorology and enviroment protection Supervisor: prof. RNDr. Zbyněk Jaňour, DrSc., IT AS CR, v.v.i. Supervisor's e-mail address: janour@it.cas.cz Abstract: Dispersion of pollutants in the atmosphere of urban areas is the important task in environmental sciences. The main goal was the quantitative studying of a flow in a symmetrical urban built-up area depending on a running on flow direction. There was given a theoretical base of the physical modelling of the atmospheric boundary layer in this work. The measurement was done with a model of the urban build-up area at a scale of 1:200 in the aerodynamic wind tunnel of the IT AS CR, v.v.i. in Nový Knín. The requirements to the similarity to a real atmospheric boundary layer and a model boundary layer in the wind tunnel were accomplished. Velocity fields, concentration fields and fields of scalar fluxes were measured in the area of a rectangular intersection. Results of the experiment showed significant sensitivity of the velocity field about the running on flow direction that extensively influenced ventilation of street canyons. Keywords: air pollution, atmospheric boundary layer, physical modelling, dispersion of passive contaminant,...
Mathematical models of retention object of urban drainage
Pavlík, Ondřej ; Stanko,, Ing Štefan (referee) ; Pollert,, Jaroslav (referee) ; Prax, Petr (advisor)
This work deals with the use of 3D mathematical models of fluid in water management practice. Using 3D mathematical model was assessed retention tank Jeneweinova, which is situated on a sewer network of the city of Brno and is an important object of urban drainage. Retention basin designed to keep overflow from CSO chambers to Svratka and Svitavský náhon during storm events. Retention tank Jeneweinova is suitable for the assessment, because tank was designed bassed the Master Plan drainage of Brno using 1D mathematical model. Another factor was the physical model, which was build in LVV Vin FAST BUT. And finally, near the retention tank will be installed measurement on the sewerage network, which will be able to verify the results whitch has been predicted in this work. Mathematical model of retention tanks Jeneweinova was build in software FLOW-3D. FLOW-3D is a general purpose CFD (Computational Fluid Dynamics) software for flow of fluid in steady and unsteady mode and uses computational techniques to solve the equations of motion of fluids. This software is mainly used for the calculation of hydraulic fluids, gas flow and heat transfer simulations. Results from 3D mathematical model has been compared with the values in the physical and 1D mathematical model.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.